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Bt = 2ir -
T1F Vi .--(-VT 

= 6.28318 - 3.2899F - 6.28318 (1 - 1.0470F)1A ( H ) 

The last term in equation (9) is zero when F = O and in­
creases as F increases. Hence, for any value of F, equation 
(11) gives too high a value of Bt, the error being zero 
when F = O. Now, a t a value of F = 0.85, equations (8) 
and (11) give values of Bt agreeing to within 0.005, corre­
sponding to a variation of F at this point of less than 0.001. 
Hence equation (11) was used for values of F from 0 to 0.85 
and equation (8) for values from 0.86 to 1. The results 
are shown in Table I . The errors in Bt are less than those 
corresponding to a variation of 0.001 in the value of F. 

TABLE I 

TABLE FOR INTERPRETING EXPERIMENTAL RESULTS IN 

TERMS OP THE PARTICLE DIFFUSION EQUATION 

F 

0 
0.01 
.02 
.03 
.04 
.05 
.06 
.07 
.08 
.09 
.10 

Bt 

0 
0.00009 
.00036 
.00076 
.00141 
.00219 
.0032 
.0044 
.0057 
.0073 
.0091 

F 

0.25 
.26 
.27 
.28 
.29 
.30 
.31 
.32 
.33 
.34 
.35 

BI 

0.0623 
.0678 
.0736 
.0797 
.0861 
.0928 
.0998 
.1070 
.1147 
.1226 
.1308 

F 

0.50 
.51 
.52 
.53 
.54 
.55 
.56 
.57 
.58 
.59 
.60 

Bt 

0.301 
.316 
.332 
.348 
.365 
.382 
.400 
.419 
.438 
.458 
.479 

F 

0.75 
.76 
.77 
.78 
.79 
.80 
.81 
.82 
.83 
.84 
.85 

BI 

0.905 
.944 
.985 

1.028 
1.073 
1.120 
1.171 
1.224 
1.280 
1.340 
1.404 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

.0111 

.0132 

.0156 

.0183 

.0210 . 

.0241 

.0274 

.0309 

.0346 

.0386 

.0428 

.0473 

.0520 

.0570 

.36 

.37 

.38 

.39 

.40 

.41 

.42 

.43 

.44 

.45 

.46 

.47 

.48 

.49 

.1391 

.1485 

.1577 

.167 

.177 

.188 

.199 

.210 

.222 

.234 

.246 

.259 

.273 

.287 

.61 

.62 

.63 

.64 

.65 

.66 

.67 

.68 

.69 

.70 

.71 

.72 

.73 

.74 

.500 

.522 

.545 

.569 

.594 

.620 

.647 

.675 

.703 

.734 

.765 

.798 

.832 

.868 

.86 

.87 

.88 

.89 

.90 

.91 

.92 

.93 

.94 

.95 

.96 

.97 

.98 

.99 

1.468 

1.543 
1.623 
1.710 
1.80 
1.91 
2.03 
2.16 
2.32 
2.50 
2.72 
3.01 
3.41 
4.11 
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On the Use of Structures as an Aid in Understanding n-Electron Spectra 
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The possibility of obtaining symmetry species from known transformation properties of the squares of trial wave functions 
is investigated. Application to structures follows from the association of structures with wave functions squared. Observed 
electronic term values are arranged in a diagonal matrix which is then transformed into non-diagonal form. Base vectors 
in the transformed coordinate system are interpreted with respect to structures. It is pointed out tha t the energy matrix in 
non-diagonal form lends itself to various applications. 

Introduction 
The HLSP or valence bond method1 provides a 

particular quantum mechanical basis for an under­
standing of the role played by structures (also called 
mesomeric forms, resonance forms, paper struc­
tures, etc.) but certain objections arise. In large 
molecules the wave functions which, according to 
the valence bond scheme, correspond to the prin­
cipal or unexcited structures make only small con­
tributions.2 Moreover, the valence bond scheme 
as usually employed involves the neglect of quanti­
ties which are certainly large and does not ordi­
narily take into account the so-called o--bonds. 
One wonders, in view of the practical uses to which 
structures can be put, if there is not some funda­
mental justification for an approach other than the 
valence bond method, which also involves the use 
of structures. In the next paragraphs several 
rather striking examples of the utility of structures 
will be cited. 

(1) Recent treatmeuts have been given by D. P. Craig, Proc. Roy. 
SoC. (London), A200, 272 (1950), and M. Simuuetta and V. Schumaker, 
J. Cham. Phys., 18, 649 (1951). 

(2) A. Pullman, Doctoral Thesis, UaIv. of Paris, 1946. 

It is found that the 2600 A. band in benzene is 
in all probability Aig —> B2u

3 and this is exactly 
what one expects if the transition is considered to 
take place between \f/g and \be where 

i>t = 2"Vi (fc + fc), *. = 2"V. (fc - fc) 

and \pi% has the transformation properties of one 
Kekule" structure, ^2

2 of the other.4 It is important 
to note that structures are taken as corresponding 
to ^ 2 S. 

The transition moment integral in the language 
of wave functions (squared) related to structures is 

ft* q ^. dr = g \f ^i2 q dr f^2ldr] 

so that the electric moment implied by a distribu­
tion of charge transforming like one Kekule" struc­
ture must be different from that implied for the 
other in order than the transition be allowed. 
That the electric moments are in fact equal may be 
seen in pictorial fashion from the Kekule" structures 

(3) See for example F. M. Oarforth, / . chim. phys., 48, 6 (194S). 
(4) This is demonstrated in Part I. 
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"rV <rv 
It is convenient to take the center of the molecule 
as origin. If para disubstitution is introduced 

R R 

A 

1 
R 

it is seen that the electric moments generated must 
necessarily be in opposite directions along the y 
axis.5 The difference of the moments no longer 
vanishes and the perturbed 2600 A. transition 
becomes allowed (y), which is required by more 
conventional arguments based on group theory.6 

This method of predicting polarization using struc­
tures is of course not restricted to benzene but can 
be applied whenever it is possible to describe the 
states between which the transition takes place as 
the sum and difference of two trial wave functions 
each related to a structure. 

Another example of the application of structures 
arises in a study of the triphenylmethane dyes.7 

The general dye is 
l 

R 2 N N 

2 
/NR2 

* \ r / p 

X 
3 

where the numbers serve to indicate the position 
of the charge. For example if - X is -NR2 (and 
R- is Me) the dye is crystal violet 

R2Ne1 Y, /NR2 

% / ' 

NR2 

The particular structure illustrated transforms like 
\pi2 where the subscript indicates the position of the 
charge. The strong band at 5700 A. found in 
crystal violet can be associated8 with a transition 
to a degenerate upper level4 

^ l + $1 + fa > fa — fa, 2fa — fa — <p2 

The degeneracy of the upper level is removed 
when - X becomes, for example, -OMe; and two 
bands appear, appropriately polarized, one at 5900 
A., the other at 4700 A. 

There are numerous examples of the utility of 
structures which are so common as to pass almost 
unnoticed. For instance it is sometimes not 

(5) Imagine, for example, that the substituents, R, repel the re­
spective adjacent double bonds. 

(S) See for example S. H. Wollman, J. Chem. Phys., 14, 123 (1946). 
(7) G. N. Lewis and J. Bigeleisen, T H I S JOURNAL, 65, 2102 (1943). 
(8) The association is of course not mandatory. However even the 

possibility of making the association is regarded as being highly sug­
gestive. 

realized that the writing out of the conventional 
structures is an indispensable prerequisite to 
molecular orbital calculations. The approaches to 
the color of cyanine dyes by L. G. S. Brooker and 
to the color of triphenylmethane dyes by G. E. K. 
Branch make a most extensive and fruitful use of 
structures, and in a way which need not be con­
sidered to be quantum mechanical in the sense of 
the HLSP method. 

It is the object of this paper to give a method for 
combining quantal and group theoretical ideas with 
work with structures of an empirical nature (mesom-
erism). The result is a scheme which is not in­
consistent with quantum mechanics but which is 
quantum mechanical only by implication. 

The plan is to start with observed electronic 
energies for a given system, regarding them as 
diagonal elements of the energy matrix in a Heisen-
berg representation. Then instead of making the 
prohibitively difficult transformation to the Schro-
dinger representation (which is fully pictorial, with 
base vectors the positions of all the particles) one 
makes a transformation to an intermediate repre­
sentation characterized by the property that the 
base vectors are associated with structures. This 
new representation is called the structure repre­
sentation. I t has certain of the qualities of the 
Schrodinger scheme in that to a degree there is a 
"shape" or configuration aspect; hence there is 
greater opportunity for the exercise of quantum 
mechanical and chemical intuition than with the 
Heisenberg scheme. Matrix elements in the struc­
ture representation can be used to systematize 
data for families of related molecules and to act as 
a basis for predicting unknown matrix elements. 

The present paper is divided into two parts. 
The first is devoted to the relationship between 
species of levels and structures and hence to polari­
zations of bands. The second part deals with the 
matrix transformation theory and hence with the 
question of transition energies. 

Parti 
Symmetry Species from Structures.—In this 

part it will be shown how symmetry species are ob­
tained for states constructed from certain hypo­
thetical trial functions (as used in the linear varia­
tion method in quantum mechanics). The func­
tions are never themselves explicitly stated but are 
defined only to the extent that their squares trans­
form like structures, which are considered as given. 
For example, given the structures for formami-
dinium ion 

H 

HvAs/H 
H 

H \ ^ C \ N / H 

I 
H H H H 

(D (2) 
and assuming (1) transforms like i/'i2, (2) like ̂ 2

2, 
then to which species do the state wave functions 
belong which can be made from fa and ̂ 2? The 
answer to this question cannot strictly be given, 
but in a rather direct fashion species can be obtained 
which can be used to predict polarizations of bands. 
If a transition takes place between states of species 
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Ti and Tj then the direct product species TiI1J 
gives the polarization. If we are forced incorrectly 
to use r ^ and TjTk as representing the states 
(and assuming no degeneracy) then Tirkrjrk = 
TiT^ will again give the polarization, by virtue of 
TkTk = To the identity representation. We shall 
see that the use of structures, and hence of the 
transformation properties of trial wave functions 
squared, may bring in spurious species as Tk above. 

Briefly, the symmetry species are obtained in the 
same fashion as for trial ^'s, with the use of9 

R 

Here R is an operation of the group, x r (R) is the 
character belonging to the species T and the opera­
tion R. < $ > r is, in this paper, called a fragment. 
The usual procedure is to link up trial I^'S with 
species through the calculation of the non-vanishing 
fragments and this procedure is adapted to the use 
of structures. Thus, as will be proved in Appendix 
I, one infers species from the non-vanishing frag­
ments 

<(i)> r - E xr(R)R(i) 
R 

The parentheses around (i) denote a structure, so 
with regard to transformation properties we have 
the relation (which provides the connection with 
quantum mechanics) 

(i) = W 
Calculation of Fragments.—We shall now show 

how species are obtained generally, by considering 
several representative cases. First we treat form-
amidinium ion and allyl radical 

H 
I 

H \ c / C \ 6 / H 

H 
I 

H \ c / C v / H 

I i I I 
H H H H 

(3) (4) 
Each of these molecules is considered to belong 

to C2V with the character table 
Civ 

2 Ai 

A2 

* Bi 

y B2 

E 

1 
1 
1 
1 

C2 <Tv Cv' 

1 1 1 
1 - 1 - 1 

- 1 1 - 1 
- 1 - 1 1 

The <rv operation is taken to be reflection in the 
plane of the molecule, hence the x direction is the 

• long direction of the molecule. 
For formamidinium ion the non-vanishing frag­

ments are 
(D + (2) A1 

(D - (2) B1 

so that from \pi and ^2 two states having the species 
Ai and B1 can be formed, and the transition Ai —* 
Bi is allowed (x). 

For allyl radical we find 
(3) + (4) A1 = B2B2 

(3) - (4) B1 = A2B2 

(9) See for example H. Eyring, J. Walter and O. E. Kimball, 
"Quantum themis t ry , " John Wiley and Sons, Inc., New York, N. Y., 
1944, p. 188. 

and Ai —* Bi allowed (x). However the odd ir-
electron makes the wave function fc + ^4 belong to 
B2 while ^3 — \p* belongs to A2. Thus the polariza­
tion is given by 

B2A2 = B2B2A2B2 — A1B1 

The species Ai and Bi are spurious, but lead to the 
correct prediction with respect to polarization. 
A similar situation arises in the case of certain 
non-alternant hydrocarbons, such as the hypo­
thetical molecule pentalene.10 

Before taking up the next example, benzene, we 
need to recall that mixing between i '̂s which are 
not equivalent is accidental, so that for the present 
purposes we can consider non-equivalent ^-'s 
(and non-equivalent structures) separately. Equiv­
alence is defined as: \p\ and ^i are equivalent if 
for some R R^i = ^ j . Let us now start from the 
Kekule" structures for benzene and include also a 
particular type of ionic structure 

e 
(D (2) (3) (4) 

The Kekule" structures are equivalent, as are the 
two ionic structures. Starting from the character 
table for D6h we find for the Kekule" structures 

(l) + (2) Ai8 
(1) - (2) B2u 

and for the ionic structures 
(3)+ (4) A16 
(3) - (4) Blu» 

This means that altogether there can be formed 
from fi, ^2, ^3 and ^4 states belonging to Ai, 
(two states), Bm and B2u. There is a theoretical 
difficulty which cannot be disposed of easily but 
which is not a practical difficulty. That is, sup­
pose from the Kekule" structures the real species are 
AigTk, B2urk, while from the ionic structures the 
species are AjglTi, Biari, where Ti ^ Tk. Then the 
polarization for, say, A ^ k —• Biuri will not be 
given correctly. It seems to be necessary to make 
use of more conventional quantum-mechanical 
approaches, such as the HLSP method in order to 
guard against this contingency. 

As a final illustration we consider a case for 
which there is degeneracy. The approach here is 
adapted from a procedure developed by Dr. T. J. 
Webb.12 The central idea is to form the fragments 
as before, using not the characters, but the elements 
of the matrices of the irreducible representations. 
Thus in place of * r(R) we use xrm«(R), where we 
might, for example, consistently use the elements 
in the 1st row (m = 1) and 2nd column in = 2) 
of a particular set of matrices representing a 
particular T. 

Consider the case of crystal violet 
(10) D. P. Craig and A. Maccoll, J. Chem. Soc, 964 (1949). 
(11) Note that only one member of the set of equivalent structures is 

required; and that, considering a set of equivalent structures, there are 
as many species represented as there were linearly independent struc­
tures given (non-degenerate case). 

(12) Private communication. 
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Me2 N 

1 

where, as before, the number represents the struc­
ture with the charge on the indicated nitrogen. 
Assuming C3* symmetry we use the following 
"character table": 

C , 
Y0 

Vi 

T 2
1 1 

T 2
2 2 

T 2
2 1 

find 

E 
1 
1 
1 
0 
1 
0 

O V 1 C v * 

1 1 
- 1 - 1 

1/2 1/2 
- V 3 / 2 V3/2 
- 1/2 - 1 / 2 
- V 3 / 2 V3/2 

(1) + (2) + (3) 
( D - ( 2 ) 

2(3) - (1) - (2) 

<rv> 

1 
- 1 
- 1 -

0 1 

1 -
0 -

T0 

r2» 
T 2

2 1 

C i 

1 
1 

-1/2 
v/372 
-1/2 
-V372 

C i ' 

1 
1 

- 1/2 
- V 3 / 2 
- 1/2 

V372 

so that T0 and T2 (doubly degenerate) each occurs 
once. Incidentally, if (1), say, were not trans­
formed into itself by any R of the group there would 
be as many linearly independent yVs formed as 
operations of the group, which is the same as the 
total number of "species" (degenerate w-tuples 
counted as n species). In the present case three 
"species" are represented (using this method of 
counting which differentiates between T2

11 and 
IY1) corresponding to the fact that we started 
from three equivalent structures, in complete 
analogy with the non-degenerate case. 

We now have a method for inferring species 
(possibly spurious, but nonetheless useful ones) 
from a given set of structures, but there remains 
the question of proving the method. This is done 
for the case of no degeneracy in Appendix I. 

Part II 
The Structure Representation.—In this part a 

discussion is given of the question of attempting to 
make predictions13 about transition energies as well 
as polarizations. A preliminary problem is to 
obtain a correspondence between what is observed 
for a given molecule and the structure-theoretical 
formalism which has been partly developed in Part 
I and is to be further explained below. To illus­
trate and define the solution of this preliminary 
problem the simple case of benzene is treated. 
In deciding "what is observed" we limit ourselves 
to transitions believed to involve 2pT electronic 
excitation with no change in principal quantum 
number. To make the illustration simple only the 
first two singlet electronic states are considered. 

(13J It has frequently been said that applications of structures are 
made "after the fact." It is the aim here to point out oue way in 
which it may be possible to reverse the procedure. 

What is observed, then, are the energies O and Ei 
corresponding, respectively, to the species Au 
and B2U. The zero of energy is thus taken to be the 
true ground state energy of the molecule (£0 = 0). 
The spectroscopic terms are written in a matrix, 
called the observed energy matrix 

E Vo JSJ 

The eigenvectors representing the states are 

(0)A1,, and(!)lW A n orthogonal transformation 

gives 

where 

S-'E S = E' 

- ( 
2-V. 
2"1A 

/ £i/2 - £:/2\ 
V-iSt/2 E1Ii) 

2- VA 
- 2-1A,' 

E ' represents the energy in the primed coordinate 
system, the structure representation. The eigen­
vectors after the transformation are the columns of 

s-1 
/2-'A\ / 2-VA 
U-1A^A18, and V- 2"1AZB2, 

It is now possible to assume that the base vectors 

in the primed system (*) , (?) correspond to 

the states ^i and ^2 where (1) is one Kekule' struc­
ture, (2) the other. This procedure is given 
validity by the discussion in Part I.14 The E ' off-
diagonal elements give the interaction between the 
primed base vectors or, loosely, the Kekule struc­
tures, while the diagonal elements are the energies 
of the structures. 

The transformation is uniquely determined by 
the requirement that the energies of the Kekuld 
structures (diagonal elements of E') must be equal. 
We have seen a particular way in which "what is 
observed" for benzene is fitted into the structure 
formalism. It should be noted that within the 
meaning of the words defined here, it is strictly 
true that the ground state of benzene is the sum 
of two ^'s corresponding to structures. The matrix 
transformation theory is not perturbation theory 
but exact. It is used in preference to a wave-
mechanical formulation partly to emphasize the 
fact that the many electron ^'s are not known.15 

It is seen that ideally there are as many states 
considered as structures, symmetry relations be­
tween structures lead to a unique S,16 and the struc­
tures have the proper transformation properties 
to give the correct observed symmetries. These 
conditions are stated within the framework of the 

(14) It should be borne iu mind that here Kekule structures are the 
squares of unknown wave functions whose sum transforms like Aie, 
whose difference transforms like B2U. If one attempts to draw two such 
entities, he succeeds in producing drawings which bear a remarkable 
resemblance to Kekule structures. 

(15) A many electron \f/ function seems to be aesthetically undesir­
able for use in dealing semi-empirically with spectroscopic problems 
involving so few data. Thus an w-electron \f/ implies the possibility of 
predicting the probability that n electrons are simultaneously at n se­
lected positions. 

(16) Actually, the assumption is made that symmetry relations be­
tween elements of E ' can be inferred from the transformation proper­
ties of structures or wave functions squared. It should be noted that 
betweeu members of a complete set of equivalent structures and 
equivalent corresponding wave functions there is a unique" one to one 
correspondence. 
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preliminary problem, that of obtaining a corre­
spondence between the structure-theoretical ap­
proach and what is observed. There is the further 
and more important problem of applications to be 
discussed next. 

Methods of Application.—It is not the purpose 
of this paper to prove that the methods outlined are 
fruitful; but rather to suggest a formalism which 
is quantitative in nature, not at variance with 
quantum mechanics and which may be fruitful. 

The first method of application stems entirely 
from the considerations of Part I. One starts from 
frequently used or conventional structures and 
attempts to predict polarizations of bands. An 
example is the Ai8 -*• B2u classification of the 2600 
A. benzene band based on a consideration of the 
Kekule structures. Another is an indication that 
the visible band of Wurster's Blue should be 

Me2N- -NMe2 Me2N -NMe2 

polarized x. (Besides the group theoretical meth­
ods of Part I, here one can apply the expression 
for the transition moment given in the Introduc­
tion). 

Several other methods of application hinge upon 
the requirement that the formalism shall have been 
applied successfully to a given molecule (that the 
"preliminary problem" in the sense of the last 
section shall have been solved). Perhaps the 
most promising method lies in the capacity, for­
mally, to predict stationary state energy shifts which 
accompany small changes in the given molecule. 
The main point is that it is often quite difficult to 
guess what the effect of the structural change will 
be on the energy levels, but considerably easier to 
estimate expected changes in the energies, diagonal 
and off-diagonal, in the primed coordinate system, 
i.e., the structure representation. For example, 
visible absorption in the radical of benzidine 

H 2 N- . 

H2N 

- N H 2 

- N H 2 

(which lies at a longer wave length than that for 
(Wurster's Blue) might be described as arising from 
a splitting due to the interaction of the functions re­
lated to the structures given above. This interaction 
(which involves an electron transfer over a consider­
able distance) should probably be smaller than the 
related interaction in Wurster's Blue, and hence 
the off-diagonal matrix elements (in the primed 
representation) describing the benzidine radical 
should be smaller than those for Wurster's Blue. 
Starting from the Wurster's Blue E' one guesses a 
new E', diagonalizes it and obtains a predicted 
direction of change in transition energy. 

A similar method which also requires that the 
formalism shall have been applied successfully to a 
given molecule consists in the adoption of certain 
elements of E' for the given molecule in constructing 
E ' for a related molecule. This process will be 
illustrated with reference to amidinium ions and 

higher homologs. Consider R2N=CH—NR2, R2N 

—CH=NR 2 a substance which absorbs at ~2000 
A. (x) (the polarization has not actually been deter­
mined experimentally, but is assumed to have 
been determined as # in which case the structure-
theoretical formalism can be applied). Then if 
AE = 2a. 

* - ( - , +!) » " ' = ( - ! "o) 
The first higher homolog 

© 
R2N=CH-CH=CH-NR2 

© e © 
R2N=CH-CH-CH=NR2 

© 
R2N-CH=CH-CH=NR2 

is then considered to be represented approximately 
by 

Diagonalization of this malyix leads to the predic­
tion that for the transition from the ground to first 
excited state AE < 2a. Essentially this application 
was made by Herzfeld and Sklar,17 who considered 
they were using the HLSP or valence bond method. 
It seems preferable to reserve these names for the 
quantum-mechanical treatment1 in which matrix 
elements are "rigorously" obtained. 

Still a third approach, which essentially requires 
the assumption of a successful preliminary applica­
tion of the formalism for a given molecule, consists 
in the determination of the polarization of a transi­
tion which becomes allowed when the given mole­
cule is perturbed. The example given at the 
beginning of this paper of para disubstitution mak­
ing the 2600 A. band in benzene allowed (y) illus­
trates the procedure. It should be noted that 
group theoretical methods, with all reference to 
structures omitted, are here sufficient; but the 
use of structures makes the application easy as 
well as pictorial. 

Uniqueness and Other Questions.—In order that 
the method may be applied to a given molecule for 
which the term values and species are known we re­
quire: (A) that the number of structures be equal 
to the number of observed levels, (B) that a unique 
S can be found, and (C) that the structures trans­
form properly. 

With regard to (A), if there are too many struc­
tures they can sometimes be lumped together. 
Thus in the example given earlier for the triphenyl-
methane dyes, the structures were distinguished 
by the position of the charge, while Kekule' mesom-
erism in the benzenoidal phenyls was ignored. 
If there are too few structures then some energy 
levels must be ignored. If there are too many 
structures, one possibility is to regard the energy 
matrix E' as being only approximate but giving the 
lower levels more accurately. Instead of being an 
analog of a Heisenberg representation treatment 
the method then more closely resembles the Ritz 
variation method treatment in quantum mechanics. 
The matrix 

(17) K. F. Herzfeld and A. L. Sklar, Rev. Modem Phys., 14, 294 
(1942). 
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given above for R 2 N = C H - C H = C H - N R 2 might 
yield a good value for Ex — E0 but a poor value for 
£2 — -Eo- This is to be understood as accompany­
ing a Ritz type of calculation. We turn now to 
requirement (B). 

If there are n structures and n levels, then the 
existence of a unique S requires that there be n{n 
+ l ) /2 — n subsidiary conditions.18 Thus if we 
apply the formalism to naphthalene, with the 
three structures 

(3) 

(and assume three states of appropriate symmetry 
have been identified from the spectrum) we need 
three subsidiary conditions. Two conditions are 
required by symmetry, namely, £12' = En', £22' = 
£33' so that a unique S cannot be found. How­
ever, if we assume £ 1 / = £22' then a particular 
method of transforming the experimentally given 
£ is immediately determined. The £ ' so deter­
mined is a rigorous representation of the energy 
but must be regarded as one corresponding to a 
special (although perfectly possible)19 relation 
between (1) and the pair (2) and (3). Naphthalene 
is discussed in more detail in Appendix II, where a 
transformation of the observed energy matrix to 
non-diagonal form is made. 

With regard to the requirement (C) that the 
structures transform properly, application of the 
methods described in Part I will show in any given 
case (where the state species are determined by 
experiment) whether or not certain structures can 
be employed; or will determine for a given set of 
structures which state species have to be observed, 
or selected from among the species observed. The 
need for satisfying (C) is crucial. 

Concluding Remarks.—It seems desirable to em­
phasize that the word structure is used in two ways. 
In Part I, structure usually refers to the diagrams 
that are drawn according to the rules of chemical 
valence theory; but in Part II it stands for the 
squares of the trial functions associated with 
primed base vectors. Thus for formamidinium 
ion the sum and difference of the structures in the 
sense of Part I have to give the species Ai and Bi. 
In place of the structures used before one might 
take 

H H 

/ H H \ + N / 1 \ N - / H 

H II 

(2) 

(18) There are n(n 4* l ) /2 elements on and above the diagonal of E ' 
(which is symmetric) and we know only n term values. If we do not 
know the first term value we can stilt retain this arbitrariness in E'. 

(19) If for a given set of functions, ^i, <pi and ^3, En' 7^ E12' then add 
constx (fc + ^a) to 4>\ to give a new function still of the required sym­
metry (and hence still capable of being represented by (I)). 

! I 

I 
H 

(D 

1 
H 

Although (1) and (2) are written according to-rules 
of valence, still, on the basis of chemical intuition, 
they would be called "far-fetched." It is also 
possible to draw structures for benzene to take the 
place of the KekuM forms but these too would be 
far-fetched. A restriction to reasonable struc­
tures (in the sense of Part I) is required, although it 
may be difficult to formulate. 

We can now appreciate what condition must 
obtain in order that the present theory be fruitful. 
The condition is that it shall develop after a large 
number of applications that the Part I structures 
can be identified with the Part II structures. The 
writer believes that on the basis of already existing 
examples (some of which are described in the 
Introduction) this identication can be made. 
Nevertheless the proof has to be completely induc­
tive, so it seems undesirable to pass judgment at 
this time. It would be interesting if the condition 
were not fulfilled, for this would indicate that struc­
tures cannot be fitted into a calculus of observable 
quantities dealing with electronic energy levels. 

I t should be mentioned that application to other 
than x-electron spectra might be foreseen; with the 
feature of working in a primed representation 
retained, but with new criteria for denning a par­
ticular S to take the place of structures. An 
interesting possibility is to diagonalize a part of the 
observed transition moment matrix. When ap­
plied to x-electron spectra this procedure may give 
something very much like the structure representa­
tion but in a manner which is independent of the 
concept of structure in the sense of Part I. To 
illustrate briefly, consider formamidinium ion again, 
with 

«-( ! 2 ) - " - C L ? ) 
where xoi is the observed 0 —* 1 transition moment. 
Taking xoo = xn = 0 is equivalent to measuring the 
electric moment of the ion from the center. In 
the primed representation these quantities are 

_,, / E,/2 --E,/2\ /X1n 0 \ 
E " U / 2 £l/2JandX = (0 -J 

The energy matrix is the same as in the structure 
representation but in addition through the use of 
X' it is possible quantitatively to classify the primed 
base vectors with respect to electron distribution. 
Note that the equal and opposite electric moments 
of the base vectors are suggestive of interpretation 
with respect to structures. 
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Appendix I 
Species from Squares of Wave Functions.—The object 

is to show that the non-vanishing fragments constructed 
from structures give species for states which are constructed 
from the corresponding trial functions. Assuming with 
respect to transformation properties that (i) = i/-i2 we may 
turn our attention in the following to \p's and their squares. 
Th'e problem of spurious species will arise as a natural part 
of the proof. The case of degeneracy is not considered and 
all \p's are taken as equivalent, with & considered as a repre­
sentative. 
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(1).—We shall investigate the transformation properties 
of the non-vanishing fragments 

< ^ » > r « = Y1 x r « (R)RiAi2 

R 

Greek subscripts are used for species associated with i^2's, 
arabic with <p's. First consider the product, transforming 
like rarb 

< ^ > r . <^>r b = Y KT» (R)RiAi E X1MS)S-Ai 
R S 

The general term RiAiSiAi is either of the form ± ĵ-Ak or 
± -Aj2 so that the product is a sum of squared terms [s], and 
cross terms [c] 

<iAi>r» <iAi> r b = [s] + ' [ c ] 

It will now be shown that the squared terms alone transform 
like the entire product (like r a r b ) . Assume a particular 
operation of the group T with, for example 

T <iAi>r<> <iAi> r b = - <iAi>r» <iAi> r b 

Then T[s] = — [s] and T[c] = — [cj separately, because a 
squared term cannot be transformed into a cross-term. 

Now let us take r<* = r a r b and note that quite independ­
ently of the argument just given, but from a property of 
fragments 

<iAi2> r a = Z x r a (R)RiAi2 

R 

belongs to the species IV Thus for each pair Ta and r b 
there is a sum [s] which transforms in the same way as (and 
hence, apart from a constant factor, equals) the fragment 
< i A i 2 > r a -

From the construction of all the < iAi2 >Ta we can infer 
something about the Ta and Tb. If no fragment can be 
formed from iAi2 for the particular species T/s and T0TA = 
Tg, then at least one of r c and T^ must be missing. 

(2).—Now we use the results of paragraph one to show 
more formally the connection between product species ob­
tained from the squares of functions (like r a ) and species 
obtained from functions themselves (like r a ) . Let us use 
the fact that the set of equivalent iA2's has the same number 
of elements as the set of equivalent corresponding >A's and 
note that for the case of no degeneracy this must be the same 
as the number of species. Then we have the result that the 
set of species as obtained in the usual way from the ^'s 

S1 = |r„ rb, . . . , r„i 
has the same number of elements as the set obtained from 
the iA2's 

S2 = (Ta, I> Tv] 

This second set is by paragraph one also equal to the set of 
product species 

{rara, rarb, rarc rbra, rbrb, rbrc, r„r„ 
(the set property (a, a) = ja) is used throughout) and so 
contains the identity, T0. If Si contains T0 then S2 contains 
the n distinct species | r 0 r a , r 0 r b , r0r<., . . ., r 0 r n ( so that 
S2.is the same as, Si. 

We conclude that if T0 is represented among the true 
species then the construction of all the non-vanishing frag­
ments from structures or iA2's gives all the species that 
would have been obtained in the conventional way from the 
unsquared IA'S. 

Moreover if Si does not contain T0 then there must be at 
least one Tp such that Tp times each member of Si gives S2. 
If structures are used instead of wave functions for the 
enumeration of species through the calculation of the non-
vanishing fragments, T1, is neglected; but, as explained in 
Part I, polarizations are given correctly. 

Appendix II 
An Example, Naphthalene.—This example is to be con­

sidered as a further illustration of the solution of the "pre­
liminary problem": obtaining a correspondence between 
what is observed and the structure theoretical formalism. 
Application of the methods outlined in Part I shows that 
from the structures 

^ / \ 

'V VV W 
(D (2) (3) 

one can obtain the fragments and species 

(D A1, 
(2) + (3) A18 

(2) - (3) B,»(x) 

We now construct a matrix in the structure representation 
which depicts the first two A lg and the first B311 observed 
levels as arising from interactions among (1), (2) and (3). 
The observations for naphthalene are still somewhat contro­
versial. The E of singlet observed energies has the diagonal 
elements (e.v.) [0, 3.85, 4.18, 5.57 ].*> According to 
Schnepp and McClure21 the 0 —> 3.85 band is definitely for­
bidden and is probably either A lg — A lg or Ai, — Big, and 
the 0 —+ 4.18 band is polarized x. We are less concerned 
at this point with naphthalene than with the example afforded 
by naphthalene. Let us then assume that the 0 —• 3.85 band 
is Aig — Ai8 so that 

It 0 
E = I O 3.85 + 

\0 0 

We choose the zero of energy so that En' = £22' -E33' = 
0 (see the brief discussion of naphthalene in Part I I ) and 
using trace invariance in similarity transformations obtain 

2.68 (61.7 kcal./mole) 

- 2 . 6 8 0 0 \ 
0 1.17 0 1 

0 0 1.50/ 

Now we look for an S with S - 1 E S = E ' and such that 

•En = £22 = £33' = 0,.Ei2 ' = E n ' 

as required by symmetry and the extra assumption discussed 
in Part I I . We can put symmetry into S - 1 directly 

/ A (l-A*)1/* 0 \ 
S" 1 = I 2-1A(I-^i)1A - 2 - V a 2 - ' A ) 

\ 2 ~ 1A(I-^a)1A -2~l/tA - 2 - 1 A / 

Recall that the columns of S - 1 each represent a state of 
naphthalene. I t is helpful to think of the first and second 
columns as linear combinations of 

and 

which are kept normalized and orthogonal. Applying the 
defining equation for S and equating, say, the elements 
(S- 'ES)n and E „ ' = 0 we find A = 0.552 so that 

0 
-1.25 
-1.25 

-1.25 
0 

-1.50 

-1.25 
-1.50 

0 

Attention is called to the fact that — t has certain of the 
properties of "resonance energy" and is of a reasonable 
value. Also, note that the contributions ( (S- 'u ) 2 for the 
ground state) of (1), (2) and (3) are, respectively, 0.30, 
0.35 and 0.35. One might use these contributions in at­
tempting to predict bond distances but the results do not 
differ appreciably from predictions based on the assumption 
of equal contributions of the three structures. The above 
suggested applications are of course only intuitive, but the 
quantity t may have value even when considered from a 
rigorous standpoint. 

SEATTLE, WASHINGTON 

(20) M. Kasha and R. V. Nauman, / . Chem. Phys., 17, 516 (1949). 
(21) Private communication. But see J. R. Piatt, ibid., 19, 1418 

(1951). 


